1,616 research outputs found

    Risk assessment of maritime supply chain security in ports and waterways

    Get PDF
    Seaports and waterways are crucial for international trade, and damage to them may cost millions to the global economy. In the past, Malaysia has been threatened and attacked by terrorists, and pirates have hijacked ships near the coasts of the Strait of Malacca and the South China Sea. Such acts can negatively affect the country's maritime supply chain. This paper analyses the risk to Malaysia's maritime supply chain security in ports and waterways by applying a risk assessment matrix. The findings show that Malaysian ports are vulnerable to attacks and crime due to various factors. Also, Malaysia's waterways may always be at risk given the country's geographical location and status as one of the most important trade routes in the world. Mitigating the risk to ports and waterways can be accomplished by investing in more advanced security equipment, eliminating corruption, and increasing the military presence in the Strait of Malacca. This study may be able to help to increase ports' policy-makers' preparation and decision-making

    Intravaginal Administration of Fc-Fused IL7 Suppresses the Cervicovaginal Tumor by Recruiting HPV DNA Vaccine-Induced CD8 T Cells

    Get PDF
    Purpose: The induction of tissue-localized virus-specific CD8 T-cell response is essential for the development of an effective therapeutic vaccine against genital diseases, such as cervical cancer and genital herpes. Here, we aimed to elucidate the immunologic role of IL7 in the induction of mucosal cellular immunity. Experimental Design: IL7 was engineered through Fc fusion to enhance mucosal delivery across the genital epithelial barrier. The immunomodulatory role of IL7 was evaluated by monitoring the kinetics of various immune cells and measuring the expression of chemokines and cytokines after intravaginal administration of Fc-fused IL7 (IL7-Fc). The antitumor effects of intramuscular human papillomavirus (HPV) DNA vaccine or topical IL7-Fc alone or in a combinational regimen on mice survival were compared using a orthotopic cervical cancer model. Results: Intravaginal treatment of IL7-Fc, but not native IL7, induces upregulation of chemokines (CXCL10, CCL3, CCL4, and CCL5), cytokines (IFN-gamma, TNF alpha, IL6, and IL1 beta), and an adhesion molecule (VCAM-1) in the genital tract, leading to the recruitment of several leukocytes, including CD4, CD8, gamma delta T cells, and dendritic cells. Importantly, in this murine cervical cancer model, topical administration of IL7-Fc after intramuscular HPV DNA vaccination increases the number of HPV-specific CD8 T cells in the genital mucosa, but not in the spleen, leading to stronger antitumor activity than the HPV DNA vaccine alone. Conclusions: Our findings provide an important insight into the immunomodulatory role of IL7-Fc via topical application and the design of therapeutic vaccine regimen that induces effective genital-mucosal CD8 T-cell responses.1110Ysciescopu

    Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity

    Get PDF
    Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.111814Ysciescopu

    Clinical significance of amyloid β positivity in patients with probable cerebral amyloid angiopathy markers

    Get PDF
    Purpose: We investigated the frequency and clinical significance of amyloid β (Aβ) positivity on PET in patients with cerebral amyloid angiopathy (CAA). / Methods: We recruited 65 patients who met the modified Boston criteria for probable CAA. All underwent amyloid PET, MRI, APOE genotyping and neuropsychological testing, and we obtained information on MRI markers of CAA and ischemic cerebral small-vessel disease (CSVD). We investigated the CAA/ischemic CSVD burden and APOE genotypes in relation to Aβ positivity and investigated the effect of Aβ positivity on longitudinal cognitive decline. / Results: Among the 65 CAA patients, 43 (66.2%) showed Aβ PET positivity (Aβ+). Patients with Aβ+ CAA had more lobar microbleeds (median 9, interquartile range 2–41, vs. 3, 2–8; P = 0.045) and a higher frequency of cortical superficial siderosis (34.9% vs. 9.1%; P = 0.025), while patients with Aβ− CAA had more lacunes (1, 0–2, vs. 0, 0–1; P = 0.029) and a higher frequency of severe white matter hyperintensities (45.5% vs. 20.9%; P = 0.040). The frequency of ε4 carriers was higher in Aβ+ patients (57.1%) than in Aβ− patients (18.2%; P = 0.003), while the frequency of ε2 carriers did not differ between the two groups. Finally, Aβ positivity was associated with faster decline in multiple cognitive domains including language (P < 0.001), visuospatial function (P < 0.001), and verbal memory (P < 0.001) in linear mixed effects models. / Conclusion: Our findings suggest that a significant proportion of patients with probable CAA in a memory clinic are Aβ− on PET. Aβ positivity in CAA patients is associated with a distinct pattern of CSVD biomarker expression, and a worse cognitive trajectory. Aβ positivity has clinical relevance in CAA and might represent either advanced CAA or additional Alzheimer’s disease neuropathological changes

    Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion

    Get PDF
    Non-classical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of non-classical secretion. We have recently shown that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as LPS or TNF-α. The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms as has been postulated for the inflammatory mediators IL-1β and HMGB1. We show here that circulating Prdx1 and 2 are present exclusively as disulphide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α and this release can be induced with an oxidant. In contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway; instead, both Prdx1 and 2 are released in exosomes from both HEK cells and monocytic cells. Serum Prdx1 and 2 are also associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signalling mechanisms in inflammation

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    Synergistic effects of longitudinal amyloid and vascular changes on lobar microbleeds

    Get PDF
    OBJECTIVE: To determine whether amyloid and hypertensive cerebral small vessel disease (hCSVD) changes synergistically affect the progression of lobar microbleeds in patients with subcortical vascular mild cognitive impairment (svMCI). METHODS: Among 72 patients with svMCI who underwent brain MRI and [11C] Pittsburgh compound B (PiB)–PET, 52 (72.2%) completed the third year of follow-up. These patients were evaluated by annual neuropsychological testing, brain MRI, and follow-up PiB-PET. RESULTS: Over 3 years, 31 of 52 patients (59.6%) had incident cerebral microbleeds (CMBs) in the lobar and deep regions. Both baseline and longitudinal changes in lacune numbers were associated with increased numbers of lobar and deep microbleeds, while baseline and longitudinal changes in PiB uptake ratio were associated only with the progression of lobar microbleeds, especially in the temporal, parietal, and occipital areas. Regional white matter hyperintensity severity was also associated with regional lobar CMBs in the parietal and occipital regions. There were interactive effects between baseline and longitudinal lacune number and PiB retention on lobar microbleed progression. Increased lobar, but not deep, CMBs were associated with decreased scores in the digit span backward task and Rey-Osterrieth Complex Figure Test. CONCLUSIONS: Our findings suggest that amyloid-related pathology and hCSVD have synergistic effects on the progression of lobar microbleeds, providing new clinical insight into the interaction between amyloid burden and hCSVD on CMB progression and cognitive decline with implications for developing effective prevention strategies

    MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden

    Get PDF
    Perivascular spaces that are visible on magnetic resonance imaging (MRI) are a neuroimaging marker of cerebral small vessel disease. Their location may relate to the type of underlying small vessel pathology: those in the white matter centrum semi-ovale have been associated with cerebral amyloid angiopathy, while those in the basal ganglia have been associated with deep perforating artery arteriolosclerosis. As cerebral amyloid angiopathy is an almost invariable pathological finding in Alzheimer’s disease, we hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with a clinical diagnosis of Alzheimer’s disease, whereas those in the basal ganglia would be associated with subcortical vascular cognitive impairment. We also hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with brain amyloid burden, as detected by amyloid positron emission tomography using 11C-Pittsburgh B compound (PiB-PET). Two hundred and twenty-six patients (Alzheimer’s disease n = 110; subcortical vascular cognitive impairment n = 116) with standardized MRI and PiB-PET imaging were included. MRI-visible perivascular spaces were rated using a validated 4-point visual rating scale, and then categorized by severity (‘none/mild’, ‘moderate’ or ‘frequent/severe’). Univariable and multivariable regression analyses were performed. Those with Alzheimer’s disease-related cognitive impairment were younger, more likely to have a positive PiB-PET scan and carry at least one apolipoprotein E ɛ4 allele; those with subcortical vascular cognitive impairment were more likely to have hypertension, diabetes mellitus, hyperlipidaemia, prior stroke, lacunes, deep microbleeds, and carry the apolipoprotein E ɛ3 allele. In adjusted analyses, the severity of MRI-visible perivascular spaces in the centrum semi-ovale was independently associated with clinically diagnosed Alzheimer’s disease (frequent/severe grade odds ratio 6.26, 95% confidence interval 1.66–23.58; P = 0.017, compared with none/mild grade), whereas the severity of MRI-visible perivascular spaces in the basal ganglia was associated with clinically diagnosed subcortical vascular cognitive impairment and negatively predicted Alzheimer’s disease (frequent/severe grade odds ratio 0.03, 95% confidence interval 0.00–0.44; P = 0.009, compared with none/mild grade). MRI-visible perivascular space severity in either location did not predict PiB-PET. These findings provide further evidence that the anatomical distribution of MRI-visible perivascular spaces may reflect the underlying cerebral small vessel disease. Using MRI-visible perivascular space location and severity together with other imaging markers may improve the diagnostic value of neuroimaging in memory clinic populations, in particular in differentiating between clinically diagnosed Alzheimer’s and subcortical vascular cognitive impairment

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome
    corecore